Hypothesis

Role of inositol 1,4,5-trisphosphate in excitation-contraction coupling in skeletal muscle

Pompeo Volpe, Francesco Di Virgilio, Tullio Pozzan and Giovanni Salviati

Consiglio Nazionale delle Ricerche, Centro di Studio per la Biologia e la Fisiopatologia Muscolare, Centro di Studio per la Fisiologia dei Mitocondri, Istituto di Patologia Generale dell'Università di Padova, via Loredan 16, 35131 Padova, Italy

Received 11 November 1985; revised version received 16 December 1985

The sarcoplasmic reticulum (SR) of skeletal muscle is an intracellular membranous network that controls the myoplasmic Ca²⁺ concentration and the contraction-relaxation cycle. Ca²⁺ release from the terminal cisternae (TC) region of the SR evokes contraction. How electrical depolarization of the transverse tubule is linked to Ca²⁺ release from the junctionally associated TC is still largely unknown. Independent evidence has been recently obtained indicating that either inositol trisphosphate (IP₃) or (and) Ca²⁺ is (are) the chemical transmitter(s) of excitation-contraction coupling. Here we outline the experimental data in support of each transmitter and discuss possible interactive roles of Ca²⁺ and IP₃.

Skeletal muscle Excitation-contraction coupling Ca2+ release Ca2+ Inositol 1,4,5-trisphosphate

1. INTRODUCTION

Following an action potential propagated along the transverse tubule (TT), Ca²⁺ is released from specialized regions of the SR, the terminal cisternae (TC), and muscle contraction ensues [1]. Signal transduction for muscle activation occurs at the triad where TC and TT are junctionally associated via bridging structures called feet [2]. Juxtaposed TC and TT membranes are 120-150 Å apart [2]. Three different hypotheses have been proposed to explain excitation-contraction (EC) coupling during the twitch; however, no conclusive evidence in favour or against any of these hypotheses has been provided [3].

(i) The mechanical hypothesis [4] postulates that charge movements at the TT membrane level con-

Abbreviations: 1,4,5-IP₃, inositol trisphosphate exogenously added; IP₃, inositol trisphosphate generated in stimulated cells, which is likely to be a mixture of the two 1,4,5 and 1,3,4 isomers

- trol Ca²⁺ channels in the junctional SR by altering long-connecting molecules in the feet; such a mechanical linkage might open one SR channel per charge site.
- (ii) The electrical hypothesis envisions a transient electrical pathway that allows a small current flow across the triadic junction [5]. It seems clear, however, that TT action potential does not propagate along the SR [6].
- (iii) The chemical hypothesis states that a specific chemical transmitter, e.g., Ca^{2+} or IP_3 , is released within the triadic junction in response to an action potential. Simple diffusion across the 120-150 Å junctional space requires less than 1 μ s, whereas the latency between the upswing of the TT action potential and the rise of myoplasmic free Ca^{2+} is about 2.5 ms [7]. Thus, EC coupling is not too fast for chemical transmission.

In this article we will focus on the chemical hypothesis for EC coupling, outlining the ex-

perimental data and their implications, stressing, at the same time, pitfalls and ambiguities of such an hypothesis.

2. IS Ca²⁺ THE CHEMICAL TRANSMITTER?

The Ca²⁺ dependence of Ca²⁺ release from skeletal muscle SR is now well estabilished: (i) Isolated SR vesicles, mainly derived from TC, display Ca²⁺-induced Ca²⁺ release at micromolar free Ca²⁺ [8-10] with rate constants as high as 100 s⁻¹ [11]; (ii) SR of skinned fibres shows Ca²⁺-dependent Ca²⁺ release [12-14]. Release rates are compatible with those in vivo when the bathing solution contains physiological free Mg²⁺ and 3 μM free Ca²⁺ ([13] and A. Fabiato, personal communication); (iii) Release of Ca²⁺ from the SR of mechanically skinned fibres evoked by depolarization of sealed off TT is Ca²⁺-dependent [15].

If there is a step of EC coupling which is Ca^{2+} -dependent (fig.1) the unavoidable question is: where is the messenger Ca^{2+} coming from? Two putative sources have been listed:

(i) Ca²⁺ originates from the extracellular space, as in mammalian cardiac muscle [16]. However, in skeletal muscle, external EGTA does not prevent contractile activation [17] and Ca²⁺ channel blockers fully inhibit trans-sarcolemmal Ca²⁺ influx without affecting EC coupling in intact single fibres [18]. Only a late, slow phase of tension development is correlated with the inward Ca²⁺ influx via voltage-sensitive Ca²⁺ channels [19].

(ii) Ca²⁺ is bound to the internal leaflet of the TT

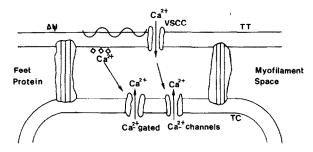


Fig.1. Scheme depicting Ca^{2+} as the messenger for EC coupling. VSCC, voltage-sensitive Ca^{2+} channels; $\Delta\psi$, TT action potential.

membrane (phospholipids?) and is displaced by the incoming action potential [20]. This possibility is weakly supported by the finding that the twitch of intact fibres can be reduced in size and in some cases eliminated without reducing the extracellular free Ca²⁺ to 0 [21].

Therefore, the fundamental question concerning the occurrence and origin of messenger Ca²⁺ remains the main objection to such an hypothesis.

3. IS IP₃ THE CHEMICAL TRANSMITTER?

IP₃ has been proposed as the messenger coupling extracellular stimuli to Ca²⁺ release from intracellular stores in a variety of cell types [22], including smooth muscle [23-25]. The general scheme outlined by Berridge and Irvine (see fig.1 in [22]) dictates that the appropriate extracellular stimulis triggers the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP₂), located in the inner leaflet of the plasma membrane, into diacylglycerol and 1,4,5-IP₃, the latter compound being a water-soluble second messenger [22]. 1,4,5-IP₃ is hydrolysed by specific phosphatases to inositol 1,4-bisphosphate (IP₂) and inositol 1-phosphate (IP₁).

As far as skeletal muscle is concerned, it has been found that: (i) 1,4,5-IP₃ induces Ca²⁺ release from both isolated TC fractions which are enriched in junctional SR membranes [26] and the SR of skinned fibres ([26,27]; rabbit and frog, respectively). The effect of 1,4,5-IP₃ is antagonized by ruthenium red, a blocker of TC Ca²⁺ channels [26]; (ii) Direct electrical stimulation of intact frog muscles, e.g. a tetanus lasting more than 3 s, increases 2-4-fold the level of IP1, IP2 and IP3 above control [27]; (iii) Prolonged K+ depolarization increases ³²P labelling of phosphatidylinositol in frog muscles [28]; (iv) Stimulation of the nicotinic acetylcholine receptors in chick embryo myotubes leads to accumulation of water-soluble inositol phosphates and increased phosphatidylinositol turnover [29].

A simplified model involving IP₃ in EC coupling, is depicted in fig.2. TT action potential evoked IP₃ production at the level of TT membranes via a PIP₂ phosphodiesterase. IP₃ released within the triadic junction opens IP₃-sensitive Ca²⁺ channels localized in TC (see fig.1 in [26]),

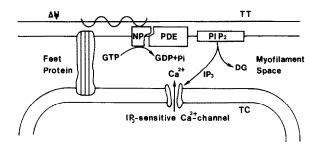


Fig. 2. Scheme depicting IP₃ as the messenger for EC coupling. $\Delta \psi$, TT action potential; Np, GTP-binding protein; PDE, PIP₂ phosphodiesterase; DG, diacylglycerol. Other abbreviations are mentioned in the text.

and myoplasmic free Ca²⁺ rises. Several crucial questions remain to be answered.

- (i) Are PIP₂, the substrate from which IP₃ derives, and the specific PIP₂ phosphodiesterase present at the TT level? Mitchell, Lindemaien and Jones (personal communication) found PIP₂ in highly purified junctional TT, obtained by French press treatment of isolated triads [30], after labelling with [³²P]ATP.
- (ii) Does PIP₂ hydrolysis take place during electrical activation of the muscle and before contractile activation? Is the rate of phosphoinositide breakdown fast enough (millisecond range) to be causally related to a single twitch? In chick embryo myotubes acetylcholine induces phosphatidylinositol breakdown with a time course compatible with that of depolarization triggered by similar concentrations of acetylcholine [29]. This observation, however, does not necessarily mean that such events occur in adult (mature) muscle fibres. In whole muscle bundles, generation of IP3 as a result of a direct tetanus [27] and increased ³²P labelling of phosphatidylinositol after K⁺ depolarization [28] do not cogently prove that IP₃ is produced in a few milliseconds and is causally related to a single twitch. To show unambiguously that IP₃ has a primary role in EC coupling, IP₃ production must be measured after a single twitch given via the motor nerve to muscles which are then completely frozen within 3-4 ms [31]. This experiment should also clarify whether or not the rate of phosphoinositide breakdown is compatible with EC cou-

pling time scale. It is worth mentioning that a lower limit for IP₃-mediated events is currently set at 200 ms [33] in the case of phototransduction [32].

(iii) How is TT depolarization linked to PIP₂ hydrolysis? In other cell systems, GTP-binding proteins have been involved in coupling extracellular stimuli to PIP2 phosphodiesterase activation [34]. We have recently obtained evidence that a GTP-binding protein plays some role in EC coupling in skeletal muscle [35]: (i) GTP γ S, a nonhydrolysable analogue of GTP, causes tension development in skinned fibres; (ii) GTP_{\gamma}S does not act directly on the SR, as indicated by lack of effect on Ca2+ fluxes in isolated SR fractions. GTP γ S, most likely, evokes Ca²⁺ release from the SR by activating PIP₂ phosphodiesterase (see fig.2); (iii) The GTP_{\gamma}S effect occurs at physiological free Mg2+ and is inhibited by ruthenium red; (iv) The GTP γ S effect is partially blocked by pertussis toxin (IAP), which is believed to inactivate stimulatory GTP-binding protein(s). In neutrophils and platelets, it has been shown that the toxin prevents intracellular Ca²⁺ rises and phosphoinositide breakdown induced by receptoragonist interaction [34,36,37].

Although a number of critical questions await experimental appraisal, and a negative report on the effect of IP₃ in a crude SR fraction has appeared [38], we think that there is as much evidence for a role of IP₃ in EC coupling as for other cell systems where IP₃ is accepted as the messenger for agonist-induced Ca²⁺ release from intracellular stores [39].

4. ARE Ca²⁺ AND IP₃ INTERACTING IN EC COUPLING?

As a matter of speculation, we will briefly outline two models in which Ca²⁺ and IP₃ are not mutually exclusive transmitters.

If one assumes that Ca²⁺ is the first messenger for EC coupling, IP₃ may be released secondarily following activation of a Ca²⁺-dependent PIP₂ phosphodiesterase. A late rise in IP₃ may be important in tuning the amount of Ca²⁺ released from TC or in amplifying the response to Ca²⁺.

If one assumes, instead, that IP₃ is the first messenger, the opening of junctional IP₃-sensitive

Ca²⁺ channels may bring about a small Ca²⁺ efflux which, in turn, leads to massive Ca²⁺ release via Ca²⁺-gated Ca²⁺ channels. Fast kinetics techniques are needed to discriminate further between these two possibilities.

In conclusion, the chemical hypothesis for EC coupling, though far from being proved, is getting closer than any other hypothesis to explain the nature of EC coupling in skeletal muscle.

ACKNOWLEDGEMENTS

We thank Dr S. Adamo for providing a preprint of his paper, and Drs R.D. Mitchell, J. Lindemaien and L.R. Jones (Department of Pharmacology, Indiana University, Indianapolis, IN) for allowing us to quote their unpublished results.

REFERENCES

- Somlyo, A.V., Gonzales-Serratos, H., Shuman, H., MacLellan, G. and Somlyo, A.P. (1981) J. Cell Biol. 90, 577-594.
- [2] Franzini-Armstrong, C. (1970) J. Cell Biol. 47, 488-499.
- [3] Somlyo, A.P. (1985) Nature 316, 298-299.
- [4] Schneider, M.F. and Chandler, W.K. (1973) Nature 242, 244-246.
- [5] Mathias, R.T., Levis, R.A. and Eisenberg, R.S. (1980) J. Gen. Physiol. 76, 1-31.
- [6] Oetliker, H. (1982) J. Muscle Res. Cell. Motil. 3, 247-272.
- [7] Vergara, J., Delay, M., Heiny, J. and Ribalet, B. (1983) in: The Physiology of Excitable Cells (Grinnel, A. and Moody, W. eds) pp. 343-355, Alan R. Liss, New York.
- [8] Miyamoto, H. and Racker, E. (1982) J. Membrane Biol. 63, 193-201.
- [9] Kim, D.H., Ohnishi, S.T. and Ikemoto, N. (1983)J. Biol. Chem. 258, 9662-9668.
- [10] Meissner, G. (1984) J. Biol. Chem. 259, 2365-2374.
- [11] Meissner, G. (1985) Biochemistry, in press.
- [12] Stephenson, E.W. (1981) J. Gen. Physiol. 77, 419-443.
- [13] Fabiato, A. (1985) Biophys. J. 47, 195a.
- [14] Volpe, P., Salviati, G. and Chu, A. (1986) J. Gen. Physiol., in press.
- [15] Volpe, P. and Stephenson, E.W. (1986) J. Gen. Physiol., in press.

- [16] Fabiato, A. (1983) Am. J. Physiol. 245, C1-C14.
- [17] Armstrong, C.M., Bezanilla, F.M. and Horowicz, P. (1972) Biochim. Biophys. Acta 267, 605-608.
- [18] Gonzales-Serratos, H., Valle-Anguilera, R., Lathrop, D.A. and Del Carmen Garcia, M. (1982) Nature 298, 292-294.
- [19] Ildefonse, M., Jacquemond, V., Rougier, D., Renaud, J.F., Fosset, M. and Lazdunski, M. (1985) Biochem. Biophys. Res. Commun. 129, 904-909.
- [20] Frank, G.B. (1980) Biochem. Pharmacol. 29, 2399-2406.
- [21] Frank, G.B. (1982) Jap. J. Physiol. 32, 589-608.
- [22] Berridge, M.J. and Irvine, R.F. (1984) Nature 312, 315-321.
- [23] Suematsu, E., Hirata, M., Hashimoto, T. and Kuriyama, H. (1984) Biochem. Biophys. Res. Commun. 120, 481-485.
- [24] Somlyo, A.V., Bond, M., Somlyo, A.P and Scarpa, A. (1985) Proc. Natl. Acad. Sci. USA 82, 5231-5235.
- [25] Carsten, M.E. and Miller, J.D. (1985) Biochem. Biophys. Res. Commun. 130, 1027-1031.
- [26] Volpe, P., Salviati, G., Di Virgilio, F. and Pozzan, T. (1985) Nature 316, 347-349.
- [27] Vergara, J., Tsien, R.Y. and Delay, M. (1985) Proc. Natl. Acad. Sci. USA 82, 6352-6356.
- [28] Novotny, I., Saleh, F. and Novotna, R. (1983) Gen. Physiol. Biophys. 2, 329-337.
- [29] Adamo, S., Zani, B.M., Nervi, C., Senni, M.I., Molinaro, M. and Eusebi, F. (1985) FEBS Lett. 190, 161-164.
- [30] Mitchell, R.D., Palade, P. and Fleischer, S. (1983) J. Cell Biol. 96, 1008-1016.
- [31] Torri-Tarelli, F., Grohovaz, F., Fesce, R. and Ceccarelli, B. (1985) J. Cell Biol. 101, 1386-1399.
- [32] Brown, J.E., Rubin, L.J., Ghalayini, A.J., Tarver, A.P., Irvine, R.F., Berridge, M.J. and Anderson, R.E. (1984) Nature 311, 160-162.
- [33] Gold, G.H. and Korenbrot, J.I. (1980) Proc. Natl. Acad. Sci. USA 77, 5557-5561.
- [34] Cockroft, S. and Gomperts, B.D. (1985) Nature 314, 534-536.
- [35] Di Virgilio, F., Salviati, G., Pozzan, T. and Volpe, P., submitted.
- [36] Okajima, F. and Ui, M. (1984) J. Biol. Chem. 259, 9580-9588.
- [37] Uhing, R.J., Jang, H., Prpic, V. and Exton, J.H. (1985) FEBS Lett. 188, 317-320.
- [38] Scherer, N.M. and Ferguson, J.E. (1985) Biochem. Biophys. Res. Commun. 128, 1064-1070.
- [39] Berridge, M.J. (1985) Sci. Am. 253, 142-152.